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THE PHASE FIELD REGIME OF A
GROUTING MODEL

The sophisticated grouting model based
on the convection dispersion equation is
used. Its set up corresponds to the standard
laboratory test. For different sets of input
data, it is checked numerically that the ratio of
the distance covered by the injection front to
the width of the zone of the transition from the
soil with the maximal value of cement
concentration in the liquid phase to the one
where this concentration is negligible
increases with time at sufficiently high
injection pressure. Besides, the numerical
evidence that in situ two-dimensional model
of the permeation grouting based on a
problem with a free moving boundary is
relevant is produced.
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Introduction. Several decades are an
ordinary duration of a large construction
project. Often at the start of such the
undertaking there is need in constructing a
tunnel in a ground that is not going to
experience heavy loads subsequently. In
such the case before the excavation it is
worthwhile to stabilize it to make sure that the
shaft will not crash by the end of the project
due to additional weight trees will create. In
this case, the permeation grouting should be
used to reduce the cost through preserving
the structure of the treated soil. In this
technique, cement grout is injected in soil at
pressure that does not ruin the structure of
the treated ground. It is expensive and time
consuming. Its regime is determined by the
evolution of the cement concentration
distribution in space. Hence, modeling this
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evolution is research that has a great value.
Cement grout consists of particles. The small
ones can deposit on the walls of the pores
and pore throats. However, these particles
can be large enough to get stuck in the pore
throats [1]. Therefore, mathematical
description of the cement grout propagation
in the soil is not trivial. There are a lot of
papers such as [2] and [3] that shed light on
various issues that arise during the
construction of this description through
comparing the results of the model
calculations with the ones of laboratory
measurements. However, respective models
are problems in which initial conditions do not
conform to the boundary ones. It gives rise to
the significant waste of computer resources
that occurs during the search of numerical
solutions [4]. Since they contain regions of
high gradients which positions depend on
time [2, 3], it is not feasible to estimate the
truncation error through analysis of numerical
solutions. Therefore, in the above mentioned
papers there is significant uncertainty in the
input data which allows neglecting the
truncation error. However, it makes the above
mentioned comparison to be not informative
[5]. Nevertheless, in the recent research [4],
the sophisticated grouting model based on
the convection dispersion equation is
developed. In this model initial conditions
conform to the boundary ones. As for its set
up, it corresponds to the standard laboratory
test. In it, a cement grout is injected at a
constant pumping rate in the base of a
vertical tube opened at the top and filled with
water saturated sand [2], [3]. In the reference
[3], the injection pressure reaches 8 bars and
it is assumed that at such the pressure the
structure of the grouted sand is not ruined.
The fact that results of numerical calculations
according to the permeation grouting model
[3] are in agreement with the ones of the
respective laboratory measurements verifies
this assumption. Moreover, if this technique is
used to treat dry chalk, then the injection
pressure can be as high as 12 bars [6]. M.
Demchuk and N. Saiyouri performed rough
estimates that indicate that at such the values
of the injection pressure, permeation grouting
can be modeled by a problem with a free
moving boundary [7].

M. Demchuk has recently obtained

numerical  solutions of 2-dimensional
problems of the latter class which set ups
correspond to in situ grouting. In each of
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these set ups, it is assumed that either a long
trench or a round bore-hole is made under
injector foundation. The astringent infiltrate is
injected in such the injector at the constant

pressure p,. In each case, the injection front

(the curve I, on Figure 1) is a free surface

and its evolution in time and space needs to
be found. First, M. Demchuk obtained
solutions choosing the initial position of the
injection front as close to I; as a modern

computer allows, however, according to in
situ conditions [8]. Nevertheless, later he
showed that such the choice of the initial
position of the injection front gives rise to
inappropriateness of adoption of the
continuum approach. Moreover, as a
remedial measure he offered to assume that
the initial position of the injection front is the
one of the free surface after 120 seconds of
the evolution calculated according to the
model [8]. This modification gave rise to only
3 % decrease in the injection time. As for the
final injection front positions and their
uncertainties, the modification does not
influence them [9], [10].
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FIG. 1. The stabilized domain.

The aim of this work consists in checking
numerically that starting from some moment
of time one can model the evolution of the
cement concentration spatial distribution
during grouting using a problem with a free
moving boundary. We conduct the numerical
experiment in the frameworks of the
calculation # 1 [9] and the sophisticated
grouting model [4] based on the convection
dispersion equation.

Numerical Results.
In what follows,
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where 7 <<¢, and gl(to) is uncertainty in the

final injection front position obtained in the
framework of the calculation #1 [9] when one
assumes that the initial position of the
injection front is the location of the free

surface after time equal to ¢, elapses since
the beginning of the evolution calculated

according to the model [8]. From Table 1, it
follows that there is the sharp threshold in the

dependence &/ (to) when 22sec<t, <44sec.

Since in the recent research [9] ¢, =120sec,

one can conclude that it is appropriate to use
a problem with a free moving boundary to
model the evolution of the cement
concentration spatial distribution in the case
of the calculation # 1 [9].

TABLE 1

The dependence of ¢| on t,.

t, (sec) &, Yolsec
22 0.116
44 0.0175
66 0.0172
90 0.0169
104 0.0168
114 0.0166

As for the sophisticated grouting model
[4], in what follows, the threshold value is the
one which order of magnitude is one order of
magnitude greater than the truncation error.
We define the width of the transition zone as
the distance between the point at which the
cement concentration is equal to the
difference between its maximal value and the
threshold value and the point at which this
concentration is equal to the threshold value.
As for the position of the injection front, we
assume that it corresponds to the point at
which the cement concentration is two times
smaller than its maximal value. The estimation
of the truncation error is cumbersome
because the solutions of the grouting models
based on the convection dispersion equation
contain regions of high gradients which
positions depend upon time and not known in
advance. In this work, we estimate the
truncation error as described in [5]. The
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calculations are performed for two sets of the
input parameters. In the first set, the pumping
rate, the length of the tube, and the number
of the grid nodes in the spatial direction equal
to 1.5-10° m®sec, 0,7 m, and 501 respectively
[5] whereas in the second one they are equal
to 12-107° m’sec, 5 m, and 4001. As for the
diameter of the tube, the injection times, and
the characteristics of the treated soil, their
values are taken from the reference [5]. The
values of the small parameters and the large
ones introduced in the model to guarantee
that the initial conditions conform to the
boundary ones are the same functions of the
number of the grid nodes in the spatial
direction that are used in the reference [5]. In
both cases, the time increment is equal to
0.005 sec. The results of numerical
calculations for two sets of input data are
presented in Tables 2 and 3 respectively.
From Tables 2 and 3, it follows that the ratio
of the transition zone width to the distance
covered by the injection front decreases with
time and that at a fixed injection time the

higher the rate is, the smaller the ratio is.
TABLE 2
The numerical results for the case of the

first set of input data

Injection Time (sec) Ratio | Absolute Error
100 2.31 0.18
250 1.65 0.19
400 1.46 0.15
TABLE 3

The numerical results for the case of the
second set of input data

Injection Time (sec) | Ratio | Absolute Error
100 1.24 0.11
250 0.82 0.07
400 0.66 0.05

Conclusion. In this work, it is checked
numerically that modeling cement
concentration spatial distribution evolution
with the help of the problem that belongs to
the class of problems with free moving
boundaries is appropriate in the case of one
of the calculations presented in [9]. Besides,
in this work we produce the numerical
evidence that the sophisticated grouting
model [4] of the standard laboratory test
becomes the phase field one at sufficiently
high injection pressure.
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AHOTALUIA

BukopucmaHo demaribHy mMoOesib HagHi-
maHHs1, OCHOBaHy Ha PIBHSIHHI KOHBEKMUBHOI
Oucniepcii. Y Hili nocmaHoeKka 3adadi eidro-
gidae cmaHOapmHomy nabopamopHomy 0oc-
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nidoxkeHH0.  [ns  pisHux Habopie exiOHUX
napamempis, nepesipeHo YucesibHo, Wo
8iOHOWEHHS 8idcmaHi, rpolideHoi ¢hpoHMom
HaeHimaHHs, 00 WUpUHU 30HU repexody eid
obnacmi MakcumarbHoI KOHUeHmpauii
uemeHmy 8 piokil ¢pasi 0o obracmi HynLO8o!
makoi KoHueHmpauii 3pocmae 3 rniIuHoOM 4Jacy
3a docmamHbO 8€/IUKO20 MUCKY HacHImaHHSI.
Kpim moao ompumaHO 4ucesnibHe mnidmeep-
OeHHs1 adekeamHOCMIi 8UKOPUCMaHHS 3adadi
3 BiNIbHOKO PYXOMOK MeXKero 07151 MOOEsTH08aHHS
HagHimaHHsl, WO BUKOHYemMbCS 3a yMO8,
HabruxeHux 0o pearibHUX.

Krnroyosi criosa: modersib ¢ha308020 rorsis,
PiBHSIHHST  KOHBeKmueHoi  ducniepcii, cmabi-
nizayiss  rpyHmy, wupuHa rnepexioHoi 30HU,
y3200eHa no4amkoeo-Kpatioga 3adauya,
080-8uUMipHa mModesib, 0OHO-8UMIpPHa MOBerb.

AHHOTALUUA

Ucnonb3oeaHo  nodpobHyrw  mModerib
HazHemaHusi, OCHOBAHHYK Ha ypasHeHuUU
KoHeekmueHoU ducriepcuu. B Hel rnoc-
maHoeka 3adayu coomeemcmeyem cmaH-
GapmHomy nabopamopHOMYy uccrieO08aHULo.
Ans pasnuyHbix Habopo8 6x00HbIX napa-
Mempo8 MPOBEPEHO YUCIIEHHO, 4YMO OMHO-
weHue paccmosiHusi, npoldeHHo20 (bpPOH-
MmOoM HazcHemaHusi, K WUpUHe 30HbI nepexoda
om obnacmu MakcumarbHoU KOHUeHmpayuu
uemeHma 8 Xudkou ghase Kk obnacmu Hynesou
makol  KOHUeHmpayuu eo3pacmaem C
meyeHueM 8peMeHuU pu  OoCmamoYyHO
b6orbwom OaerneHUU HaesHemaHusi. Kpowme
moeo rosy4eHo YucrieHHoe nodmeepxoeHue
adekeamHOCmMU UCMOMb308aHUsi 3adadyu co
ce0600HOlU  nodsuxxHol  epaHuuel  Ons
ModenupogaHuUsi ~ HazHemaHusi, = Komopoe
8bIMONTHAEMCS 8 YCII08USIX, NPUBIUXEHHbIX K
pearnbHbIM. A UMEHHO, paccMompeH criy4al
psda UUMUHOPUYECKUX UHXXEKMOopOos,
Komopnblli 8 modenu 3aMeHEH mpaHweedl.
lpu amom paccmampusaemcsi HaeHemaHue
UeMeHmMHo20 pacmeopa 8 cyxou epyHm nod
OasrieHuUeMm, Komopoe He CrocobHo
paspywums CmMpyKmypy epyHma.

Knouesbie criosa: Mmodenb @hba3zo8020
rons, ypasHeHUe KOHeeKmueHoUl ducrepcuu,
cmabunusayusi epyHma, WupuHa nepexoOHol
30HbI, CO2/1aco8aHHasi HavyarlbHO-Kpaesasi 3adaya,
dsymepHasi MoOesib, 0OHOMEPHasi MOOE/Tb.
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BUKOPUCTAHHA BIgXoA4IB
METAJIYPIAHOIO BUPOBHHNL|TBA
B TEXHOJOr I BETOHY

BukopucmaHHs npomucriosux gidxodig y
bydisenbHil iHOycmpii € nepcrnekmugHUM
HarnpsmMoMm 3HUXeHHS cobieapmocmi rnpodyK-
Uil i BVIEeHWEHHST He2amu8HO20 HaBaHMa)KeHHS
Ha HaeKonuuwHe cepedosuuie. 3a pesynbma-
mamu 6ydigeribHO-MexHIYHUX (Gocnidxyearnuch
MIUHiCMb rpuU CMUCKaHHI i euauHi, 8000rnoe-
JIUHaHHS, sodocmilikicmb | MOpo30ocmilikicmb) i
caHimapHo-ximiyHux (Gocnidxysasnucb erse-
MeHmHul cknad i pieHi migpauii 3Hadyuux e
2ieieHiYHOMY BIOHOWEHHI Memariesux KamioHie
y 600He cepedosuuwie i cepedosuuie, WO
iMimye kucriomdi Oouwi) sunpobyesaHb 3pa3skie
6emoHy, wo micmsams ocadu 2a/lb8aHOCMOKI8
memariypeitiHoeo eupobHuumea, roKkas3aHo
MOXugicmb 8UKopucmaHHs ocadig 8 sskocmi
0obasok 8 6emoH 8 Kinbkocmi 1...2 %.
O6rpyHmosaHo pekomeHOauii w000 BUKO-
pucmaHHs 6emoHHOi cymiwi 3 Oobaskamu
ocady Ons 8U20MOBJIEHHS 3ari306emoHHUX
rnnum Orsl NoKpummie MicbKux oopia.

Knroyoei criosa: ocad cmidyHUX 800;
ymunidayis; 6emoHHi eupobu; 6ydisesibHo-
MeXHIYHI, caHImapHO-XiMIYHi OOCITIOXEeHHS

MoctaHoBKa npo6nemu. BaxnueicTb
3aXOPOHEHHS  TOKCUYHMX  MPOMMUCIOBUX
BigXoAiB, WO MICTATb BaXKKi MeTanu, B AaHUN
Yyac He BUKIMKAE CYMHIBY, MpU4oMy
HeBiOKNaaHICTb BUpiWEHHs npobnemn Becb
yac 3poctae. OpgHMM 3 NEepCrneKkTUBHUX
HanpsaAMKIB yTunisauii NpoMMUCroBUX BiAXoA4iB
€ BKIIOYEHHS iX y BUrnsagi gobaBok 4o ckragy
OygisenbHUX martepianis. 3asHayeHun cnocib
3abe3neyye Oinbwy B MOPIBHAHHI 3
00’EMHNMM CXOBULLLAMWN EKOMOoriYHy Geaneky,
B TOMY YmMCHi i CTIMKICTb B YyMOBaXx KaTacTpod.

AHani3a OCHOBHMX pAochniaXeHb Ta
ny6nikauin. BukopucTtaHHs NpPOMMCNOBMX
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